Glycogen synthase activity is reduced in cultured skeletal muscle cells of non-insulin-dependent diabetes mellitus subjects. Biochemical and molecular mechanisms.
نویسندگان
چکیده
To determine whether glycogen synthase (GS) activity remains impaired in skeletal muscle of non-insulin-dependent diabetes mellitus (NIDDM) patients or can be normalized after prolonged culture, needle biopsies of vastus lateralis were obtained from 8 healthy nondiabetic control (ND) and 11 NIDDM subjects. After 4-6 wk growth and 4 d fusion in media containing normal physiologic concentrations of insulin (22 pM) and glucose (5.5 mM), both basal (5.21 +/- 0.79 vs 9.01 +/- 1.25%, P < 0.05) and acute insulin-stimulated (9.35 +/- 1.81 vs 16.31 +/- 2.39, P < 0.05) GS fractional velocity were reduced in NIDDM compared to ND cells. Determination of GS kinetic constants from muscle cells of NIDDM revealed an increased basal and insulin-stimulated Km(0.1) for UDP-glucose, a decreased insulin-stimulated Vmax(0.1) and an increased insulin-stimulated activation constant (A(0.5)) for glucose-6-phosphate. GS protein expression, determined by Western blotting, was decreased in NIDDM compared to ND cells (1.57 +/- 0.29 vs 3.30 +/- 0.41 arbitrary U/mg protein, P < 0.05). GS mRNA abundance also tended to be lower, but not significantly so (0.168 +/- 0.017 vs 0.243 +/- 0.035 arbitrary U, P = 0.08), in myotubes of NIDDM subjects. These results indicate that skeletal muscle cells of NIDDM subjects grown and fused in normal culture conditions retain defects of basal and insulin-stimulated GS activity that involve altered kinetic behavior and possibly reduced GS protein expression. We conclude that impaired regulation of skeletal muscle GS in NIDDM patients is not completely reversible in normal culture conditions and involves mechanisms that may be genetic in origin.
منابع مشابه
The role of glycogenin in glycogen synthesis and non-insulin dependent diabetes mellitus.
The principal defect in the majority of non-insulin dependent diabetes mellitus (NIDDM) patients is impaired glycogenesis in skeletal muscle in response to insulin. Glycogen synthesis is initiated by transfer of glucosyl residues to the tyrosine OH at position 194 of a 37KD primer protein named glycogenin (1,2). While the enzymatic details of the first glucose addition have not yet been determi...
متن کاملGlycogen synthase and phosphofructokinase protein and mRNA levels in skeletal muscle from insulin-resistant patients with non-insulin-dependent diabetes mellitus.
In patients with non-insulin-dependent diabetes mellitus (NIDDM) and matched control subjects we examined the interrelationships between in vivo nonoxidative glucose metabolism and glucose oxidation and the muscle activities, as well as the immunoreactive protein and mRNA levels of the rate-limiting enzymes in glycogen synthesis and glycolysis, glycogen synthase (GS) and phosphofructokinase (PF...
متن کاملThe diabetic phenotype is conserved in myotubes established from diabetic subjects: evidence for primary defects in glucose transport and glycogen synthase activity.
The most well-described defect in the pathophysiology of type 2 diabetes is reduced insulin-mediated glycogen synthesis in skeletal muscles. It is unclear whether this defect is primary or acquired secondary to dyslipidemia, hyperinsulinemia, or hyperglycemia. We determined the glycogen synthase (GS) activity; the content of glucose-6-phosphate, glucose, and glycogen; and the glucose transport ...
متن کاملDecreased insulin responsiveness of glucose uptake in cultured human skeletal muscle cells from insulin-resistant nondiabetic relatives of type 2 diabetic families.
To investigate the contribution of inherited biochemical defects to the peripheral insulin resistance of type 2 diabetes, we studied cultured skeletal muscle from 10 insulin-resistant nondiabetic first-degree relatives of type 2 diabetic families and 6 control subjects. Insulin stimulation of glucose uptake and glycogen synthesis was maximal in myoblasts. Insulin-stimulated glucose uptake (fold...
متن کاملRegulation of glycogen synthesis in human muscle cells.
Glucose uptake into muscle and its subsequent storage as glycogen is a crucial factor in energy homeostasis in skeletal muscle. This process is stimulated acutely by insulin and is impaired in both insulin-resistant states and in type 2 diabetes mellitus. A signalling pathway involving protein kinase B and glycogen synthase kinase 3 seems certain to have a key role in stimulating glycogen synth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 98 5 شماره
صفحات -
تاریخ انتشار 1996